

Course outline: 142 Magnetism G101A UEENEEG101A - Solve problems in electromagnetic devices and related circuits

Qualification:	Certificate III in Electrotechnology Electrician - UEE30811			
Applicable to:	Learners, industry/employers, governments, community and Global Energy Training Solutions as the provider			
Unit of competency:	Accessible from: http://training.gov.au/Training/Details/UEENEEG101A			
	Policy & Procedure 1 – Enrolment Policy			
	Policy & Procedure 2 – Credit Transfer & Recognition of Prior Learning			
	Policy & Procedure 3 – Learner Support			
	Policy & Procedure 4 – Assessment			
	Policy & Procedure 5 – Academic Misconduct			
	Policy & Procedure 6 – Alcohol & Other Drugs			
	Policy & Procedure 7 – Access, Equity & Diversity			
	Policy & Procedure 8 – Vulnerable People			
	Policy & Procedure 9 – Work, Health & Safety			
	Policy & Procedure 10 – Incident, Injury & Rehabilitation			
	Policy & Procedure 11 – Competency, & Qualification Assessment Decisions			
Related policies:	Policy & Procedure 12 – Complaints & Appeals			
	Policy & Procedure 13 – Privacy			
	Policy & Procedure 14 – Fees			
	Policy & Procedure 15 – Industry & Employer Engagement			
	Policy & Procedure 16 – Trainers & Assessors			
	Policy & Procedure 17 – Administration & Other Staff			
	Policy & Procedure 18 – Quality Assurance			
	Policy & Procedure 19 – Business & Financial Risk Management			
	Policy & Procedure 20 – Changes to Qualifications or Business			
	Policy & Procedure 21 – Conflict of Interest			
	Policy & Procedure 22 – Records Management			
	Policy & Procedure 23 – Marketing & Advertising			
Monitor and review:	Policy & Procedure 18 – Quality Assurance			
Responsibility:	Ben Murphy – as Proprietor			
Questions/queries:	Feedback and suggestions welcomed: <u>office@gets.com.au</u> (+61) 02 6262 0077			

Table of Contents

1. Material requirements	2
2. Session summaries	2
Day 1	2
Day 2	3
Day 3	3
Day 4	3
Day 5	4
Day 6	4
Day 7	5
3. Elements and Performance Criteria	5
4. Assessments	6
5. Version control	6

1. Material requirements

- AS/NZS 3000:2007 incorporating amendment 1 and 2
- Scientific calculator, ruler, pens and pencils
- Note book
- Hand tools
- Covered footwear
- Internet access (provided)

2. Session summaries

	Day 1
Required Skills and Knowledge	 T1 Magnetism encompassing: magnetic field pattern of bar and horse-shoe magnets. magnets attraction and repulsion when brought in contact with each other. common magnetic and non-magnetic materials and groupings (diamagnetic, paramagnetic and ferromagnetic materials). principle of magnetic screening (shielding) and its applications. practical applications of magnets construction, operation and applications of reed switches.
	 T2 Electromagnetism encompassing: conventions representing direction of current flow in a conductor. magnetic field pattern around a single conductor and two adjacent conductors carrying current. Using the "right hand rule" to determine the direction of magnetic field around a current carrying conductor. direction of force between adjacent current carrying conductors. effect of current, length and distance apart on the force between conductors (including forces on bus bars during fault conditions). magnetic field around an electromagnet. Using the "right hand rule" to determine the direction of magnetic field around a current carrying coil. magnetomotive force (m.m.f.) and its relationship to the number of turns in a coil and the current flowing in the coil.

	 practical applications of electromagnets. 			
	Day 2			
Required Skills and Knowledge	 T3 Magnetic circuits encompassing: magnetic characteristic curve for various materials and identify the various regions. Identify the various conditions of a magnetic material from its Hysteresis loop. factors which determine losses in magnetic material. methods used to reduce electrical losses in a magnetic circuit. magnetic flux (definition, unit and symbol). reluctance as the opposition to the establishment of magnetic flux. permeability (definition, symbol and unit). difference for magnetic and non-magnetic materials in regards to reluctance and permeability. calculation of m.m.f., flux or reluctance given any two values. flux density (definition, symbol, unit and calculation). magnetising force (definition, symbol, unit and calculation). common magnetic circuit types. effect of an air gap in a magnetic circuit. 			
	 T4 Electromagnetic induction encompassing: principle of electromagnetic induction (Faraday's law of electromagnetic induction). applying "Fleming's right hand rule" to a current a carrying conductor under the influence of a magnetic field. calculation of induced e.m.f. in a conductor given the conductor length, flux density and velocity of the conductor. calculation of induced e.m.f. in a coil given the number of turns in a coil and the rate of change of flux. calculation of force on a conductor given the flux density of the magnetic field, length of the conductor and the current being carried by the conductor. Lenz's law applications of electromagnetic induction 			

Day 3				
Required	T5	Inductance encompassing:		
Skills and	construction of an inductor, including a bifilar winding inductor.			
Knowledge	•	Australian Standard circuit diagram symbol for the four types of inductor.		
	•	effect of physical parameters on the inductance of an inductor.		
	•	common types of inductor cores.		
	•	applications of the different types of inductors.		
	•	definition of terms self induction, inductance and mutual inductance.		
	• calculation of value of self induced e.m.f. in a coil.			
	 mutual induction occurs between two coils. 			
	•	graphical relationship between load voltage, current and self induced e.m.f. in a single d.c.		
		circuit having inductance.		
	• practical applications for the effects of self and mutual induction.			
	•	undesirable effects of self and mutual induction.		
	•	definition of term "time constant" and draw the characteristic curve as applied to a series		
		circuit containing an inductor and a resistor. (LR circuit)Calculation of value of the time		
		constant for an LR circuit given the values of the components.		
	•	time constants required for the current in an LR circuit to reach its final value.		
	•	determining of instantaneous values of voltage and current in an LR circuit using a universal		
		time constant chart.		

Day 4			
Required	T6	Measurement Instruments encompassing:	
Skills and	•	moving coil, moving iron, dynamometer meter movements and clamp testers.	
Knowledge	•	practical applications for moving coil, moving iron and dynamometer meter movements.	
	 Calculation of resistance of shunts and multipliers to extend the range of ammeter voltmeters. 		
	•	factors to be considered in selecting meters for a particular application.	
 safety category of meters and their associated applications. 			
	•	steps and procedures for the safe use, care and storage of electrical instruments.	
	T7	Magnetic devices encompassing:	
	•	construction, operation and applications of relays.	
	•	construction, operation and applications of contactors.	
	•	magnetic methods used to extinguish the arc between opening contacts.	
	•	construction, operation and applications of Hall Effect devices.	
	•	operation and applications of magnetostriction equipment.	
	•	construction, operation and application of magnetic sensing devices.	

Day 5			
Required Skills and Knowledge	T8 • • •	Machine principles encompassing: basic operating principle of a generator. applying Fleming's right hand rule for generators. basic operating principle of a motor. applying Fleming's left hand rule for motors. calculation of force and torque developed by a motor.	
	T9 • • •	Rotating machine construction, testing and maintenance encompassing: components of a d.c. machine. difference between a generator and a motor in terms of energy conversion. nameplate of a machine. using electrical equipment to make electrical measurements and comparison of readings with nameplate ratings. Identification of faults in a machine from electrical measurements. care and maintenance processes for rotating machines safety risks associated with using rotating machinery.	

Day 6			
Required	T10	Generators encompassing:	
Knowledge	•	calculation of generated and terminal voltage of a d.c. shunt generator	
	•	prime movers, energy sources and energy flow used to generate electricity.	
	•	types of d.c. generators and their applications.	
	•	methods of excitation used for d.c generators.	
	•	equivalent circuit for a d.c. generator.	
	•	importance of residual magnetism for a self excited generator.	
	•	open circuit characteristics of d.c. generators.	
	•	load characteristics of a d.c generator.	
	•	reversing the polarity of a d.c. generator	
	•	Connect and test a d.c generator on no-load and load	
	•	Identify safety risks associated with using generators.	
	T11	Motors encompassing:	

• operation of a motor and its energy flow.
effect of back e.m.f. in d.c. motors
• torque as the product of the force on the conductors and the radius of the armature/rotor.
 types of d.c. motors and their applications.
 circuit diagrams for the types of d.c. motors.
 equivalent circuit for the types of d.c. motors.
 calculation of power output of a motor.
 characteristics of the different types of d.c. motors.
 connection and testing a d.c. shunt motor on no-load and load
 reversing the direction of rotation of a d.c. motor.
 safety risks associated with using motors (include risks of series d.c. motors).

Day 7			
Required	T12	Machine efficiency encompassing:	
Skills and	•	losses that occur in a d.c machine.	
Knowledge	•	methods used to determine the losses in a d.c. machine.	
	•	calculation of losses and efficiency of a d.c machine.	
	•	efficiency characteristic of a d.c. machine and the conditions for maximum efficiency.	
	•	application of Minimum Energy Performance standards (MEPS).	
	•	methods used to maintain high efficiency.	

3. Elements and Performance Criteria

Elements and Performance Criteria require practice and demonstration in the work place.

Element		Performance Criteria	Work Performance
1: Prepare to work on electro- magnetic devices and circuits.	1.1	OHS procedures for a given work area are identified, obtained and understood.	 Satisfactory Needs improvement Not performed
	1.2	OHS risk control work preparation measures and procedures are followed.	 Satisfactory Needs improvement Not performed
	1.3	The nature of the device(s)/circuit(s) problem is obtained from documentation or from work supervisor to establish the scope of work to be undertaken.	 Satisfactory Needs improvement Not performed
	1.4	Advice is sought from the work supervisor to ensure the work is coordinated effectively with others.	 Satisfactory Needs improvement Not performed
	1.5	Sources of materials that may be required for the work are established in accordance with established procedures.	 Satisfactory Needs improvement Not performed
	1.6	Tools, equipment and testing devices needed to carry out the work are obtained and checked for correct operation and safety.	 Satisfactory Needs improvement Not performed
2:Solve electro- magnetic devices/ circuit problems.	2.1	OHS risk control measures and procedures for carrying out the work are followed.	 Satisfactory Needs improvement Not performed
	2.2	The need to test or measure live is determined in strict accordance with OHS requirements and when necessary conducted within established safety procedures.	 Satisfactory Needs improvement Not performed

	2.3	Circuits/machines/plant are checked as being isolated where necessary in strict accordance OHS requirements and procedures.	 Satisfactory Needs improvement Not performed
	2.4	Established methods are used to solve circuit problems from measure and calculated values as they apply to single and three-phase low voltage circuit.	 Satisfactory Needs improvement Not performed
	2.5	Unexpected situations are dealt with safely and with the approval of an authorised person.	 Satisfactory Needs improvement Not performed
	2.6	Problems are solved without damage to apparatus, circuits, the surrounding environment or services and using sustainable energy practices.	 Satisfactory Needs improvement Not performed
3:Complete work and document problem solving activities.	3.1	OHS work completion risk control measures and procedures are followed.	 Satisfactory Needs improvement Not performed
	3.2	Work site is cleaned and made safe in accordance with established procedures.	 Satisfactory Needs improvement Not performed
	3.3	Justification for solutions used to solve circuit problems is documented.	 Satisfactory Needs improvement Not performed
	3.4	Work completion is documented and an appropriate person or persons notified in accordance with established procedures.	□ Satisfactory □ Needs improvement □ Not performed

4. Assessments

Assessment	When	Satisfactory mark/outcome			
Theory assessment 1	Day 3	70%			
Theory assessment 2	Day 5	70%			
Theory assessment 3	Day 7	70%			
Practical assessment 1	Day 4	100%			
Practical assessment 2	Day 6	100%			
Workplace Observation		Must be valid, sufficient,			
Employer Competency report	After theory and practical assessments				
Structured workplace experience interview	ubbebblilentb				
Note: Once all theory, practical and on-site assessments are complete, competency assessment decisions can be made in conjunction with the learner, employer and registered training organisation.					

5. Version control

Version	Date of release	Author	Authorised by	Position	Rational for change
V1	5/10/2015	Ben Murphy	Ben Murphy	Proprietor	Initial release
V2	7/2/2017	Ben Murphy	Ben Murphy	Proprietor	Added Elements and Performance Criteria